Saturation mixing ratio

Recalling the definition of mixing ratio, \(w = \frac{\epsilon e}{p - e} \approx \frac{\epsilon e}{p} \),

we can define the **saturation mixing ratio** as: \(w_s = \frac{\epsilon e_s(T)}{p - e_s(T)} \approx \frac{\epsilon e_s(T)}{p} \)

There is a unique value of \(w_s \) for a given \(T \) and \(p \). We can therefore define lines of constant mixing ratio or vapor lines on a skew-T diagram.

Also, recall that \(\epsilon = 0.622 \), so for \(p = 622 \text{ mb} \), \(w_s(T, 622 \text{ mb}) = 10^{-3} e_s(T) \). Thus, \(w_s \) in units of g/kg corresponds to \(e_s(T) \) in units of mb.
Dewpoint on a skew-T

Consider a parcel of air with temperature T and dewpoint temperature T_d at pressure p. On a skew-T, the vapor line passing through the parcel’s dewpoint gives the parcel’s actual mixing ratio, because by definition of T, isobaric cooling from T to T_d would result in $w = w_s$.

The dewpoint depression, ΔT_d, is defined as $T - T_d$. Note that $\Delta T_d = 0$ corresponds to an RH of 100%; larger values of ΔT_d correspond to relatively smaller RH.

In the absence of phase changes, mixing ratio is conserved, which implies that dewpoint remains on the same vapor line.
How does w_s change with ascent?

For adiabatic ascent, pressure decreases, and by the Poisson equation, temperature also decreases. By the definition of w_s, a decrease in temperature should decrease its value, while a decrease in pressure should increase its value. Which change “wins out”?

Let’s evaluate the derivative $\frac{dw_s}{dp}$. After some algebra and using the IGL, 1st Law for an adiabatic process, and the Clausius-Clapeyron relationship, we find:

$$\frac{dw_s}{dp} \approx \frac{w_s}{p} \left(\frac{\varepsilon L}{c_p T} - 1 \right) > 0$$

Thus, during ascent, as p decreases, saturation mixing ration also decreases.
Lifting condensation level (LCL)

Since mixing ratio is conserved for a dry adiabatic process, it is always possible to decrease \(p \) until \(w_s = w \), i.e., saturation is achieved. The pressure at which saturation is achieved is the **lifting condensation level** (LCL). The LCL defines the cloud base under forced ascent or free convection.

On a skew-T, the LCL of a parcel at temperature \(T \), dewpoint \(T_d \), and pressure \(p \) is determined by the intersection of the dry adiabat passing through \(T \) and vapor line passing through \(T_d \).