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Colonization of new ecological niches has triggered large adaptive radiations. Although some
lineages have made use of such opportunities, not all do so.The factors causing this variation
among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic
acid (DHA), an essential w-3 fatty acid, can constrain freshwater colonization by marine fishes.
Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase
gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater
habitats, but not in close relatives that failed to colonize.Transgenic manipulation of Fads2 in
marine stickleback increased their ability to synthesize DHAand survive onDHA-deficient diets.
Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies,
indicating its key role in freshwater colonization.

E
mpty niches can provide organisms with
ecological opportunities to diversify (1–3).
Many of the known large adaptive radia-
tions followed invasion of underutilized
habitats (1, 2). However, not all lineages

appear to take advantage of such opportunities.
For example, habitat shifts frommarine to fresh-
water environments have repeatedly triggered
radiations, but only in a limited number of fish
lineages (4–6). The physiological and genetic
factors causing this variation are unknown.
One of the underappreciated constraints for

freshwater colonization by marine animals is
the poor nutritional quality of food in freshwater
ecosystems. Generally, the food chain in marine
environments is rich in w-3 long-chain polyun-
saturated fatty acids, especially docosahexaenoic
acid (DHA) (fig. S1A) (7), which is essential for
animal development and health (8, 9). However,
freshwater ecosystems contain very little DHA
(fig. S1A) (7). Here, we tested and confirmed that
DHA deficiency can constrain freshwater coloni-
zation by marine fishes and identified genetic

changes that appear to have enabled some line-
ages to overcome this constraint.
Three-spined stickleback (Gasterosteus aculeatus

species complex) are primarily marine or anad-
romous (hereafter, we call bothmarine) fishes, but
when new freshwater habitats emerged after gla-
cial retreat, they successfully colonized freshwater
habitats and radiated into diverse ecotypes onmul-
tiple continents (10) (Fig. 1, fig. S2, and tables S1
and S2). By contrast, the closely related Japan Sea
stickleback (G. nipponicus), which diverged from
G. aculeatus ~0.68 to 1.5 million years (Ma) ago
(11), failed to colonize freshwater environments
and remains phenotypically homogeneous (Fig.
1). Although G. nipponicus co-occur with Pacific
Ocean populations ofG. aculeatus (Pacific Ocean
stickleback) in some localities in Japan (12–14),
have geographical access to many freshwater
habitats, and can use freshwater environments
for spawning (14), our phylogenomic analysis
showed that all known Japanese freshwater
populations belong to G. aculeatus (Fig. 1C and
fig. S3) (15–17).

Because stickleback prey differs in DHA levels
between marine and freshwater habitats (fig.
S1B), we tested the hypothesis that Japan Sea
stickleback may have a lower physiological ability
than Pacific Ocean stickleback to survive onDHA-
free diets (18). Our rearing experiments showed
that, irrespective of salinity, Japan Sea stickleback
hadhighermortality thanPacificOcean stickleback
starting ~40 days after fertilization when fed DHA-
free Artemia (P < 0.01) (Fig. 2A, fig. S4, and table
S3); this age is close to the timing of seaward
migration in nature (19). Marine-derived diets or
Artemia enriched with several fatty acids, includ-
ing DHA, significantly improved survival of Japan
Sea stickleback (P < 0.01) (Fig. 2, A and B).
Further, Japan Sea stickleback had a lower DHA
content than Pacific Ocean stickleback when fed
DHA-freeArtemia (P<0.01 for both the brain and
eye) (Fig. 2C and fig. S5), suggesting that they have
either lower DHA biosynthetic capabilities or
higher rates of DHA degradation or secretion.
Our whole-genome resequencing revealed that

Fatty acid desaturase 2 (Fads2), a gene encoding
a key enzyme catalyzing desaturation in DHA
biosynthesis (fig. S6 and table S4) (20–22), has
a higher copy number in Pacific Ocean stickle-
back than in Japan Sea stickleback (Fig. 2D and
fig. S7) (F1,12 = 79.8, P < 0.01). Higher Fads2 copy
numbers in females comparedwithmales (F1,12 =
11.7, P< 0.01) (Fig. 2D and fig. S7) are due to theX
linkage of Fads2 (see below). RNA sequencing
further revealed that Pacific Ocean stickleback
express Fads2 at higher levels than Japan Sea
stickleback (F1,12 = 5.3, P < 0.05 for brain; F1,12 =
7.0, P < 0.05 for eyes) when fed only DHA-free
Artemia (Fig. 2E and fig. S8).
To directly demonstrate the effects of Fads2

copy number on survival, we made transgenic
Japan Sea stickleback overexpressingFads2.When
fed only DHA-freeArtemia, the Fads2-trangenics
showed higher survival rates (Fig. 2F) and higher
DHA content at 40 days after fertilization than
the controlGFP-transgenics (P< 0.01) (Fig. 2G and
fig. S9). Analysis of an F2 intercross between
Pacific Ocean and Japan Sea sticklebacks further
showed that hybrids with higher Fads2 copy
number had higher survival rates at 40 to 60 days
after fertilization (P < 0.01: 10.0 to 12.1% of var-
iance explained) and longer overall life span (P <
0.05) (fig. S10). The higher survival rate of fe-
males compared with males in Japan Sea stick-
leback is consistent with the higher Fads2 copy
number in females (P< 0.01) (fig. S11). These data
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suggest that the lower Fads2 copy number may be
a constraint to colonization of DHA-deficient
freshwater niches by Japan Sea stickleback.
Fluorescence in situ hybridization (FISH) re-

vealed that Fads2 was located only on the X

chromosome [linkage group (LG) 19] in Japan
Sea stickleback, but on LG12 and LG19 in Pacific
Ocean stickleback (Fig. 3A). This result was con-
firmed by linkage analysis of Fads2 copy number
using an F2 intercross (fig. S12). Genes flanking

Fads2 on LG19, but not on LG12, showed con-
served synteny with other teleosts (fig. S13). Fur-
thermore, an outgroup, G. wheatlandi, another
marine stickleback with no known freshwater
populations (10), has Fads2 on LG19 but not on
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Fig. 1. Freshwater colonization and
diversification in G. aculeatus but not
in G. nipponicus. (A) Sampling sites in Japan:
pink squares, G. nipponicus; blue triangles,
Pacific Ocean populations of G. aculeatus;
green circles, freshwater populations
of G. aculeatus. (B) Diversification of key
foraging (gill raker number) and armor
traits (lateral plate number) in freshwater
populations. (C) Double-digest restriction
site–associated DNA sequencing (ddRAD-seq)
phylogeny of Japanese Gasterosteus
indicating that all freshwater populations
(green circles) belonged to G. aculeatus
rather than G. nipponicus (pink squares). Blue
triangles indicate Pacific Ocean marine populations
of G. aculeatus. Bar shows the substitution rate.
For bootstrap values, see fig. S3.
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Fig. 2. Contribution of higher Fads2 copy
numbers to survival with DHA-free diets.
(A) Survival curves of Japan Sea (red)
and Pacific Ocean (blue) stickleback fed only
DHA-free Artemia and Japan Sea (pink) and
Pacific Ocean (light blue) stickleback fed
marine-derived diets. (B) Survival curves of
Japan Sea stickleback fed DHA-free Artemia
(dark red) or Artemia enriched with several
fatty acids, including DHA (pink). The two
panels indicate independent replicate crosses.
(C) DHA contents in the brain and eye of
two species fed only DHA-free Artemia.
**P < 0.01. (D) Relative copy numbers of
Fads2 in males and females of Japan Sea and
Pacific Ocean sticklebacks estimated from
whole-genome resequencing (WGS) data.
Different letters above the boxes indicate signifi-
cantly different pairs (P < 0.05). (E) Expression
levels of Fads2 at 40 to 60 days after fertilization.
*P < 0.05. (F) Survival curves of Fads2-
transgenic (yellow-green) and GFP-transgenic
(gray) Japan Sea stickleback fed only DHA-free
Artemia. The two panels indicate independent
replicate crosses. (G) Whole-body DHA
content of Fads2-transgenics (yellow-green)
and GFP-transgenics (gray) at 40 days after
fertilization, when Japan Sea stickleback start
to die on DHA-free diets. *P < 0.05. RPKM, reads
per kilobase per million reads.
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LG12 (table S5) and copy numbers similar to
those of Japan Sea stickleback (fig. S14). Thus,
LG19 is the ancestral location of Fads2, and copy-
and-paste transposition of Fads2 from LG19 to
LG12 increased the ability to synthesize DHA
in G. aculeatus, but not in G. nipponicus or
G. wheatlandi. At the LG12 locus, where a 12-kb
insertion containing Fads2 and several types
of transposons exist in G. aculeatus (Fig. 3B
and fig. S15), G. wheatlandi and G. nipponicus
possess transposons without Fads2 (figs. S16 to
S18). This suggests that transposons might have
mediated the Fads2 transposition and/or that
this locus is a hot spot of insertion–deletion
mutations (23).
The estimated timing of Fads2 duplication

within G. aculeatus is 0.80 Ma ago (95% highest
posterior density: 0.47 to 1.16 Ma ago) (fig. S19),
which is much earlier than the end of the last
glacial period (0.012 Ma ago), when most stickle-
back freshwater colonization occurred (1, 10).
Marine sticklebacks from western North America
and Europe also repeatedly colonized freshwater
habitats and radiated into diverse ecotypes (10).
Our results show that they also have the extra copy
ofFads2 on LG12, with copy numbers similar to
those of the Pacific Ocean stickleback in Japan
(Fig. 4A and figs. S16 and S22C to S22F). These
data confirm that transposition onto LG12 oc-
curred before the split between the Pacific and
the Atlantic Ocean lineages (0.3 to 0.5 Ma ago)
(24). Thus, the preexisting duplication of Fads2
has likely given G. aculeatus an advantage over
other Gasterosteus species in colonizing fresh-
water habitats. However, our estimate suggests
that Fads2 on LG12 is younger than the oldest
known freshwater Gasterosteus fossil (10). Ancient
extinct freshwater species may therefore have
possessed additional Fads2 copies somewhere
in the genome or adapted to DHA-deprived diets
through other mutations.
To investigate whether there are any other

loci involved in survivorship on DHA-deficient
diets, we conducted quantitative trait locus (QTL)
mapping of survival rates using an F2 intercross
between the Pacific Ocean and Japan Sea stick-
lebacks. In addition to a suggestive QTL overlap-
ping the Fads2 gene on LG12 (3.3% of variance
in survival explained), one significant and two
additional suggestive QTLs were found on dif-
ferent autosomes (fig. S20). The QTL on LG12,
but not other QTLs, explained the Fads2 copy-
number variation. Two other QTLs, including
a significant one, showed overdominance rather
than additive effects on survival, which may re-
flect an epistatic interaction between interspecies
alleles (25) (fig. S21). Although survival rate is a
polygenic and complex trait, our unbiased QTL
analysis confirmed that the additional Fads2
copy of the Pacific Ocean stickleback on LG12
contributes to survivorship on DHA-deficient
diets.
Because the Japanese Pacific Ocean stickle-

back also have increased survivorship with
marine-derived diets compared with freshwater
diets (Fig. 2A), additional Fads2 duplications
beyond the LG12 copy may further increase
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Fig. 3. Extra copy of Fads2 on LG12 in G. aculeatus. (A) FISH results with 4ʹ,6-diamidino-2-
phenylindole (DAPI) nuclear staining. The left panel indicates a Japan Sea stickleback male with
one Fads2 copy (green) on the X chromosome (circled). In a Pacific Ocean stickleback male,
Fads2 (red) was located on the X chromosome (circle in the middle panel) and both copies
of autosomal LG12 (circles in the right panel). The colors for Fads2 and LG19 or LG12 are flipped
between the Japan Sea and Pacific Ocean males. Note that LG19 is either the X or Y chromosome,
and the LG19 probe detects the region retained on the Y chromosome. (B) Genome structure
around Fads2 on LG19 and LG12 of G. aculeatus and the corresponding region on LG12 of
G. nipponicus and G. wheatlandi. Arrows and arrowheads indicate genes and repetitive sequences,
respectively. White numbers indicate insertion size.
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Fig. 4. Parallel increase in Fads2 copies in freshwater fishes. (A) Relative copy numbers
(CNs) of Fads2 in males and females of Gasterosteus populations: red, Japan Sea; blue, Japanese
Pacific Ocean, North American and European marine ecotypes; green, freshwater ecotypes. *P < 0.05,
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DHA biosynthetic ability and be beneficial for
permanent freshwater residency. Indeed, in
Japan, freshwater stickleback populations had
even higher Fads2 copy numbers than Pacific
Ocean populations (c22 = 17.1, P < 0.01) (Fig.
4A and figs. S22 and S23). Even within fresh-
water populations, those that had a longer
evolutionary history in freshwater habitats had
higher Fads2 copy numbers (c23 = 35.3, P <
0.01) (Fig. 1C and fig. S22A to S22B). Additional
copy number increases also occurred in North
American (c21 = 4.4, P = 0.035) and European
freshwater populations (c22 = 7.2, P = 0.028)
(Fig. 4A and fig. S22C to S22F). We confirmed
that freshwater populations with additional
copies of Fads2 had more DHA than the Pacific
Ocean population or a freshwater population
with fewer copies when fed only DHA-free diets
(F2,8 = 12.6, P < 0.01) (fig. S24). Both linkage
analysis and long-readgenome sequencing showed
that tandem duplications on the X chromosome
are responsible for additional copy number in-
crease in both Japanese and Canadian freshwater
populations (figs. S25 and S26). Transposons near
Fads2might have facilitated these tandem dupli-
cations (fig. S26) (26).
To test the generality of the mechanism, we

first investigated nine-spined sticklebacks (genus
Pungitius). The freshwater species, P. tymensis
and P. kaibarae, had higher Fads2 copy numbers
than P. pungitius (P < 0.05), which inhabits only
brackish environments in Japan.P. sinensis, which
inhabits both freshwater and brackish environ-
ments (27, 28), had copy numbers intermediate
between those of P. pungitus and freshwater
nine-spined sticklebacks (Fig. 4B and fig. S27).
Finally, we investigated Fads2 copy numbers in
the ray-finned fishes whose whole-genome se-
quences have been determined (fig. S28). Fish
species that form freshwater populations had
significantly higher Fads2 copy numbers than
entirely marine species (Fig. 4C and fig. S29;
MCMCglmm accounting for phylogeny, pMCMC
< 0.01), suggesting convergent increases of Fads2
copies in diverse taxa that successfully colonized
freshwater habitats.
Gene duplications not only enhance overall

gene expression levels, but also allow duplicated
copies to acquire new functions (29). Our yeast
functional assay suggested that Fads2 genes in
the Pacific Ocean stickleback acquired an addi-
tional enzymatic function in the DHA synthetic

pathway (fig. S6 and table S4). Some of the Pacific
Ocean–specific amino acid changes were shared
by other freshwater ray-finned fishes (table S6),
suggesting that they may be responsible for the
acquisition of new enzymatic function. In addi-
tion to amino acid changes, both cis- and trans-
regulatory changes cause expression differences
between Fads2 haplotypes (fig. S30). Given that
overexpression of Fads2 rescued the lethality in
Japan Sea sticklebacks (Fig. 2, F and G), dif-
ferences in the copy number itself likely con-
tribute to differences in survival onDHA-deficient
diets, although thepossible involvement of changes
in Fads2 protein sequence and regulation cannot
be excluded.
Our data demonstrate that Fads2 is a key meta-

bolic gene important for overcoming the nut-
ritional constraints associated with freshwater
colonization in fishes. Intriguingly, Fads shows
strong signatures of selection in human popula-
tions that colonized polar regions, suggesting the
importance of Fads in even more diverse taxa,
including humans (30).
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