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Abstract
The problem of reducing the impacts of rising anthropogenic greenhouse gas on warming
temperatures has led to the proposal of using stratospheric aerosols to reflect some of the incoming
solar radiation back to space. The deliberate injection of sulfur into the stratosphere to form
stratospheric sulfate aerosols, emulating volcanoes, will result in sulfate deposition to the surface.
We consider here an extreme sulfate geoengineering scenario necessary to maintain temperatures
at 2020 levels while greenhouse gas emissions continue to grow unabated. We show that the
amount of stratospheric sulfate needed could be globally balanced by the predicted decrease in
tropospheric anthropogenic SO2 emissions, but the spatial distribution would move from
industrialized regions to pristine areas. We show how these changes would affect ecosystems
differently depending on present day observations of soil pH, which we use to infer the potential
for acid-induced aluminum toxicity across the planet.

1. Introduction

Stratospheric sulfate injections (SSI) have been pro-
posed [1, 2] as a possible method of temporarily off-
setting some of the increase in surface temperatures
produced by the anthropogenic increase of green-
house gases (GHGs). As in the case of explosive vol-
canic eruptions [3], the injected SO2 quickly oxid-
izes, producing sulfate aerosols that reflects part of the
incoming solar radiation back to space. The optically
active cloud of sulfate aerosol would also spread over
different latitudes due to the stratospheric circulation
and reside in the much more stable stratosphere for a
longer period of time (more than 12months [4]) than
tropospheric sulfate compounds which are inadvert-
ently emitted today in combustion processes (from
3 d to a month [5, 6]). For this reason, the overall
radiative effect of the sulfate particles injected in the
stratosphere would bemuch greater than the one pro-
duced by the same amount of tropospheric sulfate [6].

Understanding the possible side effects of SSI
is important to characterize before considering
deployment. Many studies have used model simu-
lations to examine possible consequences of reduced
solar radiation as a proxy for the increased albedo
by the injected aerosols, analyzing for instance the
surface response of vegetation productivity [7] or
precipitation [8]. Those analyses do not however con-
sider the effects of the increased stratospheric sulfate
burden, particularly the eventual deposition of the
injected sulfate at the land surface.

The impacts of SSI strongly depend on the scen-
ario for both the background emission pathway and
the desired climate effect of the injection. Previously,
some studies looking at deposition under SSI have
focused on injection strategies with a fixed injection
located at the equator of limited magnitude [4, 9].
Here, we show how sulfate deposition would change
under a scenario where the injection amount changes
each year in order to keep global surface temperature
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and interhemispheric and equator-to-pole temper-
ature gradient at 2020 levels, by injecting sulfate
at 4 different locations. The background emission
scenario considered is RCP8.5 (a high-end scenario
with unabated emissions) under which temperatures
would rise by the end of the century by more than
5 ◦C [10, 11]. Compared to previous fixed-magnitude
injection scenarios that did not have precise tem-
perature target, the quantity of SO2 necessary here
would be almost one order of magnitude larger. We
use here a more complex injection strategy with
complex temperature targets and a state-of-the-art
model with realistic stratospheric aerosols and bet-
ter resolved stratospheric circulation [12] (the Com-
munity Earth SystemModel version 1 with theWhole
Atmosphere Community Climate Model as its atmo-
spheric component—CESM1(WACCM) [12, 13]).
This, combined with the possibility of scaling the res-
ults for more moderate emission scenarios [14] can
produce a more useful scenario of SSI deployment
under which it to determine the possible side effects.
We focus here on the changes in global and regionally
distributed S-deposition and consider how SSI might
affect different parts of the world in terms of both soil
acidification and population density.

2. Global deposition changes

Sulfate compounds are already produced in a variety
of ways at the Earth’s surface: some are natural, such
as oceanic-produced dimethyl sulfide (DMS) [15]
and sulfate emissions from volcanic activity [3, 16],
while others are produced inadvertently by human
activities, particularly through fossil fuel combustion
(especially coal). Reducing this latter kind of SO2

emission has been a priority of many governments
and international bodies in the last decades as it rep-
resents an air quality and acid rain problem. Global
anthropogenic sulfur emissions have gone down by
around 20% since they peaked in the 1980s, largely
through reductions in North America and Europe
[17–19].

Global deposition of S is projected to decrease
over the 21st century, in absence of SSI (figure 1),
in all IPCC scenarios [6]. Even under the highest
emission scenario, RCP8.5, global SO2 emissions are
projected to decrease by more than 75% relative to
2020 [6], and therefore total deposition of sulfate
would fall accordingly. In themodel used in this work,
over 90% of the deposition would be in the form of
wet deposition (involving in-cloud and below-cloud
scavenging processes) and the rest would be in the
form of dry deposition (involving gravitational set-
tling, dispersion and transportation by turbulence).
In 2020, total global deposition is projected to be
40 Tg-S yr−1. By the last decade of the century,
under RCP8.5 total S-deposition should decrease to
23 Tg-S yr−1. Past projections have shown that the
overall clear-sky radiative forcing resulting from the

decrease in tropospheric sulfate emissions would be
+0.52Wm−2 by 2090–2100 [6]. In contrast, the neg-
ative forcing produced by the stratospheric aerosols in
this geoengineering simulation by 2090–2100 would
be−7.9 W m−2.

Under the SSI Geoengineering scenario con-
sidered here, the amount of SO2 injected in the strato-
spheremust increase almost linearly in order tomain-
tain temperatures at 2020 levels to counterbalance the
increased greenhouse gas forcing with RCP8.5 [11].
When this increased stratospheric injection is com-
bined with the reduction in industrial SO2 emissions
assumed under RCP8.5, the net result is that yearly
global SO4 deposition is projected to be very similar
between 2020 and 2100 in this particular SSI scen-
ario. However, SSI would alter both S particle size
and the spatial distribution of S deposition across the
earth. SSI impacts on S-deposition is highly scenario
depended: for instance, the RCP4.5 emission scenario
has larger reductions in industrial S and CO2 emis-
sions compared to RCP8.5, and thus requires less SSI
geoengineering to maintain current mean temperat-
ures [14]. In this interpolated case (figure 1(b)), by
the end of the century under the SSI scenario global
deposition would be only 62% of the global depos-
ition in 2020.

3. Geographical distribution of deposition

On average, sulfur particles emitted close to the sur-
face have a lifetime of 3–4 d [17]. For this reason,
most of the S deposition is normally localized geo-
graphically close to the source of the emission [20],
nonetheless a portion is transported to areas con-
sidered pristine [21, 22] (figure 2(a)). A large part of
present-day sulfate emission is due to human activit-
ies, and the resulting deposition is therefore centered
overpopulated areas in China, India, and near trop-
ical urban areas, and reduced over the oceans (figure
2(a)). In figure 2(b) we show the cumulative depos-
ition over the period of 1850–2010 to highlight that
in the past there used to be much higher emissions in
Europe and North America.

When aerosols are injected into the stratosphere,
the latitudinal distribution of the surface deposition is
mostly driven by stratospheric circulation and cross-
tropopause fluxes, resulting in most of the aero-
sols being transported into the troposphere to the
mid- and high- latitudes [5], as shown in figure
2(c) (mostly independent to the particular choice
of injection locations, see figure S1 (available online
at stacks.iop.org/ERL/15/094063/mmedia) for the
deposition in a case with equatorial injection [23]).

Once the aerosols have crossed the tropopause,
the precise geographical distribution of the sur-
face deposition depends on tropospheric circulation
and precipitation patterns, because wet deposition
removes a large portion of the sulfate particles. For
this reason, the S deposition patterns in figure 2(c)
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Figure 1. (a) Cumulated global deposition of SO4 (expressed in Tg-S) from 1850 (black line) until 2010, and for RCP8.5 (red line)
and SSI (blue line, starting in 2020). (b) Yearly and globally averaged SO4 deposition (in Tg-S yr−1) in RCP8.5 (red) and
RCP8.5+ SSI (blue) for the total deposition. Dotted lines of the same color show the same quantities scaled for an RCP4.5
scenario without and with SSI.

Figure 2. (a) Geographical distribution of SO4 deposition fluxes (g-S m−2 yr−1) for 2010–2020. (b) Cumulated SO4 deposition
from 1850–2010 on a logarithmic scale (g-S m−2) (c) differences in 2080–2099 deposition between the SSI scenario and RCP8.5
(g-S m−2 yr−1). (d) Years needed in this SSI scenario to match the cumulative deposition in the historical period. For years
greater than 2100, an emulator has been used to estimate the increase in temperatures and the sulfate needed (see methods).
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Figure 3. (a) PM2.5 (µg m−3) from sulfate concentration averaged over areas with similar population density. (b) Same as a), but
with averaged temperature changes (K) compared to present day. Projected population data taken from the SSP5 scenario, 2020
for present day and 2090 for end of century.

show large increases in S depositionwhere both atmo-
spheric concentration and precipitation are high, for
instance in the Himalayan region. Furthermore, since
temperatures would rise slightly more in the north-
ern hemisphere in this model, more SO2 is required
there to maintain the inter-hemispheric temperature
gradient [10], thus overall deposition is higher there.

SSI produces almost no increase in sulfate depos-
ition between 30 N and 30 S, since the stratospheric
circulation transports the aerosols from those latit-
udes first upwards and then at higher latitudes, where
they can cross the tropopause and then quickly reach
the surface [5]. In figure 2(d) we show that, for this
reason, it would take more than 200 years of SSI to
reach the same cumulative deposition as the histor-
ical period in many areas, while in others 20 years of
SSI are enough to match it. This can happen either
because anthropogenic deposition is still projected to
be high in some areas in the near future (such as over
parts of Asia and Africa) or because sulfate deposition
from SSI is larger than what was experienced in the
past (such as over the Arctic).

4. Changes in deposition patterns for
populations and soils

The overall spatial pattern of deposition from SSI is
not sufficient to determine its impacts on the human
population and the ecosystems.

In present day conditions, the surface concen-
tration of PM2.5 from sulfate increases with popu-
lation density (figure 3(a)), due to the close prox-
imity of most emitting sources to populated areas,
and it is well known how these particles negatively
impact the population [24, 25].For this reason, the
strong projected decrease in anthropogenic emissions
by the end of the century implies a more than halving
of sulfate-related PM2.5 (SPM2.5). Even under the
large amount of SSI needed by the end of the cen-
tury, however, the SPM2.5 concentration would be
only slightly higher than the one under RCP8.5. This
is both caused by the changes in the overall depos-
ition of sulfate shown above, and by the fact that
the particles produced by SSI in the stratosphere are
much larger than 2.5 microns [4, 10].

Furthermore, these effects on the SPM2.5 concen-
tration should be considered in context of SSI capa-
city to counter greenhouse-gas driven warming (fig-
ure 3(b)). Without SSI, under RCP8.5 all population
densities would incur at least 4 ◦C of warming, in the
most populated areas and up tomore than 5 ◦C in less
populated areas. This non-uniformity in the averaged
temperatures can be explained considering that most
populated areas are located in zones with a temperate
climate.

The problem of acid rain in the 1980s/1990s
highlighted the adverse impact of sulfur deposition
in some ecosystems. Our projections show that SSI
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Vulnerability of soils to present day deposition
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Figure 4. Evaluated vulnerability of different soils to the present-day deposition (top panel) and increase in vulnerability under
the geoengineering scenario (bottom panels, calculated as the difference in vulnerability between SSI in 2080–2100 minus present
day, see also figure S4). Vulnerability is here defined as the potential of soils to release Al in the process of neutralizing incoming
acidity (as shown, for instance, in [26, 27], Al is a toxic chemical for many terrestrial and aquatic ecosystems), and is calculated as
the product of the aluminum saturation percentage inferred from present-day soil pH (figure S2) and the S deposition fluxes
shown in figure 2, divided by its global maximum so that the index ranged between zero and 1.

would have a rather mild impact over highly popu-
lated region, due to the preeminence of S-emissions
from anthropogenic sources near the ground. Here
we consider the effects of S deposition due to SSI by
assessing the potential of different soils to mobilize
dissolved aluminum (Al) in response to acid addi-
tion. The addition of sulfate might have other effects,
such as a local direct modification of the soil pH, but
here we focus on dissolved Al, considering its tox-
icity both for aquatic ecosystems and plant nutrition
[26–28], but also considering its damaging effects on
water quality due to drainage from soils [27].

The potential for Al release varies with soil pH
[26, 28]. Soils with an alkaline pH (pH > 7) have a
low potential formobilizing Al because Al solubility is
minimal in this pH range and the carbonate and silic-
ate minerals common in alkaline soils readily neut-
ralize acidity [26]. Below pH 6 Al-hydroxides and Al-
organic complexes neutralize acidity, the solubility of
Al increases, and soil exchange sites become domin-
ated by Al ions [26]. In soils where exchange sites are
dominated by Al, acid deposition drives Al export;
whereas in soils with small or intermediate concen-
trations of exchangeable Al, export of exchangeable
base cations can temporarily buffer pH and prevent

Al release [28]. Thus, to a first order, we can assume
the potential for acid deposition to drive Al export is
approximately linearly related to the soil’s aluminum
saturation percentage (ASP), with a maximum at
ASP = 100%. This is consistent with critical load-
ing studies that have assumed a linear relationship
between vulnerability and soil base saturation [27].

We derived ASP from ground observations by
using a large database of soil pH measurements [29]
to model ASP from pH (seeMethods). This approach
allowed us to map the relative vulnerability of soils
to Al release given observed modern soil pH and
modelled S deposition rates. We combined these data
using a normalized vulnerability index, where vulner-
ability = (ASP, %)∗(S deposition rate, gS m−2 yr−1)
divided by its maximum value. The vulnerability
index provides an index to how much ecosystems
could be harmed by acidification of the soils, through
the mobilization of Al, a toxic chemical for many ter-
restrial and aquatic ecosystems [26, 27].

We compare acid deposition in the present day
(figure 4, first panel) and at the end of century
with geoengineering (second panel). Global-scale
geographic patterns are broadly similar between the
two scenarios because they are partly defined by the
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present-day distribution of acid soils, which are most
common in humid climates. There are however local
shifts in S deposition that affect soils differently in
the two scenarios: the potential for Al mobilization
expands in the Pacific Northwest of North Amer-
ica and high-latitude Scandinavia and declines in the
Southeastern USA (figure S4). These patterns reflect
shifts in S deposition over regions where soils are cur-
rently acidic.

These patterns may change over the long term
given that soil pH has the potential to decline in
response to acid deposition. The potential for shifts
in soil pH is thought to be highest in intermediate pH
soils because soils at the alkaline and acid extremes are
buffered by the solubility of secondary minerals [29].
This hypothesis is supported by acid-addition exper-
iments, which show that soil pH is most responsive
to acid addition at initial pH values near 7 [30]. Since
SSI also has the potential to affects soil pH, then soils
that are not currently vulnerable to Al release may
eventually become vulnerable. Interactions between
acid deposition and alkalinity in dust might on the
other hand offset the effects of deposition [27]. While
the long term historical effects of dust deposition on
soils are implicit in our estimates via their effect on
measured soil pH, future interactions with dust may
vary depending on climate and land use in dust source
areas.

5. Conclusions

The danger of an unmitigated global warming is one
of the most pressing issue of this century: even just
considering the differences between a global warm-
ing of 1.5 ◦C or 2 ◦C show a wide range of increased
risks and impact that might affect both humans
and ecosystems [31]. Both of those thresholds would
require a massive effort from the entire industrialized
and developing world, and higher pathways of emis-
sions (or higher climate sensitivities) that would res-
ult in higher surface warming cannot be considered
unlikely.

The RCP8.5 scenario [32] is the most extreme of
the IPCC emissions pathways, and thismodel projects
it to produce global mean warming of 5 ◦C by the
end of the century [10]. While a large sulfate injec-
tion into the stratosphere has the potential to com-
pletely offset the change in global mean temperatures
from 2020, some warming would however persist in
the ocean [33], and at very high latitudes [34]. Fur-
thermore, while SSI might potentially partially alter
atmospheric CO2 concentrations due to carbon cycle
feedbacks [35–37], it would do nothing to reduce the
amount of other GHGs [38] in the atmosphere: ocean
acidification would continue to rise, and there would
likely be regional shifts in the hydrological cycle [39].
If not accompanied by a strong decrease in anthro-
pogenic emissions, SSI would have to be maintained
for a long time. We can speculate that, if SSI is ever

deployed, it is undertaken as a means of meeting a
climate target such as the one proposed by the Paris
Accord (2 ◦C) with a smaller amount of SO2 (as
shown in figure 1) than the one considered in this
study, reducing most of the climatic effects [14].

We have shown here that even such an extreme
deployment of SSI, the amount of sulfate needed
globally in this century would more or less com-
pensate the reduction in anthropogenically emitted
SO2 from other sources. However, the geographical
distribution, and the people and ecosystems affected
by it, would change from lower to higher latitudes and
from largely land-focused to deposition on land and
ocean. This indicates that, in order to properly assess
in a holistic way the possible drawbacks of deploying
SSI, more focus needs to be put not only on changes
to the climate, but also on ecosystem changes. Of all
possible side effects, the eventual deposition of sulfate
is the most intuitive one, and in the authors’ experi-
ence, one of the first concerns when members of the
general public are first confrontedwith the idea of SSI,
especially for people who might have lived through
the issue of acid rain at the end of last century.

Here we have studied how different soils could be
affected by the increase in acidity, with some areas in
North America, Northern Europe and Oceania show-
ing an increased potential for aluminummobilization
under geoengineering compared to present day levels,
with possible consequences for local ecosystems and
water reservoirs. This is just an example of possible
interactions between what is injected in the strato-
sphere and the surface that still need to be analyzed,
such as, for instance, the interaction of the newdepos-
ition with the nitrogen cycle [40], or other possible
effects of the sustained accumulation of S deposition
on ecosystems. This means that determining whether
or not SSI could be a potential additional element of a
climate change strategy requires the collaboration of
scientists from a broad range of subjects, least some
crucial aspects are ignored in the evaluation process.
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